Initial glue/kern support
This commit is contained in:
parent
0b896d83c7
commit
b83f2c1d8c
@ -3,6 +3,8 @@ local stretchy = require'stretchy'
|
||||
|
||||
local properties = node.get_properties_table()
|
||||
|
||||
local kern_t, glue_t = node.id'kern', node.id'glue'
|
||||
|
||||
local noad_t, accent_t, style_t, choice_t = node.id'noad', node.id'accent', node.id'style', node.id'choice'
|
||||
local radical_t, fraction_t, fence_t = node.id'radical', node.id'fraction', node.id'fence'
|
||||
|
||||
@ -202,9 +204,20 @@ local function fence_to_table(fence, sub, cur_style)
|
||||
return delim
|
||||
end
|
||||
|
||||
local function space_to_table(amount, sub, cur_style)
|
||||
if amount == 0 then return end
|
||||
-- FIXME: What does MathML do in subscripts etc.? Probably we have to "unscale" in the non mu case...
|
||||
if sub == 99 then -- TODO magic number
|
||||
return {[0] = 'mspace', width = string.format("%.2fem", amount/18)}
|
||||
else
|
||||
return {[0] = 'mspace', width = string.format("%.2fem", amount/tex.sp'1em')}
|
||||
end
|
||||
end
|
||||
|
||||
function nodes_to_table(head, cur_style)
|
||||
local t = {[0] = "mrow"}
|
||||
local result = t
|
||||
local nonscript
|
||||
for n, id, sub in node.traverse(head) do
|
||||
local props = properties[n] props = props and props.mathml_table
|
||||
if props then
|
||||
@ -236,9 +249,22 @@ function nodes_to_table(head, cur_style)
|
||||
t[#t+1] = fraction_to_table(n, sub, cur_style)
|
||||
elseif id == fence_t then
|
||||
t[#t+1] = fence_to_table(n, sub, cur_style)
|
||||
elseif id == kern_t then
|
||||
if not nonscript then
|
||||
t[#t+1] = space_to_table(n.kern, sub, cur_style)
|
||||
end
|
||||
elseif id == glue_t then
|
||||
if cur_style >= 4 or not nonscript then
|
||||
if sub == 98 then -- TODO magic number
|
||||
nonscript = true
|
||||
else
|
||||
t[#t+1] = space_to_table(n.width, sub, cur_style)
|
||||
end
|
||||
end
|
||||
else
|
||||
t[#t+1] = {[0] = 'tex:TODO', other = n}
|
||||
end
|
||||
nonscript = nil
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
@ -11,4 +11,6 @@
|
||||
\[
|
||||
\sum_a\underline c\dot bc'
|
||||
\]
|
||||
|
||||
Es gilt $\sin(x)-\sin(x+2\pi)=0$.
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user